首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62篇
  免费   0篇
大气科学   1篇
地球物理   30篇
地质学   12篇
海洋学   4篇
天文学   15篇
  2015年   1篇
  2011年   2篇
  2009年   2篇
  2008年   1篇
  2007年   5篇
  2006年   4篇
  2005年   2篇
  2004年   1篇
  2001年   1篇
  2000年   1篇
  1999年   3篇
  1998年   5篇
  1996年   2篇
  1995年   3篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1982年   1篇
  1981年   1篇
  1980年   4篇
  1978年   3篇
  1977年   2篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有62条查询结果,搜索用时 31 毫秒
11.
12.
13.
14.
Divergent plate boundaries, such as the one crossing Iceland, are characterized by a high density of subparallel volcanic fissures and tectonic fractures, collectively termed rift zones, or fissure swarms when extending from a specific volcano. Volcanic fissures and tectonic fractures in the fissure swarms are formed during rifting events, when magma intrudes fractures to form dikes and even feeds fissure eruptions. We mapped volcanic fissures and tectonic fractures in a part of the divergent plate boundary in northern Iceland. The study area is ~1,800 km2, located within and north of the Askja central volcano. The style of fractures changes with distance from Askja. Close to Askja the swarm is dominated by eruptive fissures. The proportion of tectonic fractures gets larger with distance from Askja. This may indicate that magma pressure is generally higher in dikes close to Askja than farther away from it. Volcanic fissures and tectonic fractures are either oriented away from or concentric with the 3–4 identified calderas in Askja. The average azimuth of fissures and fractures in the area deviates significantly from the azimuth perpendicular to the direction of plate velocity. As this deviation decreases gradually northward, we suggest that the effect of the triple junction of the North American, Eurasian and the Hreppar microplate is a likely cause for this deviation. Shallow, tectonic earthquakes in the vicinity of Askja are often located in a relatively unfractured area between the fissure swarms of Askja and Kverkfjöll. These earthquakes are associated with strike-slip faulting according to fault plane solutions. We suggest that the latest magma intrusions into either the Askja or the Kverkfjöll fissure swarms rotated the maximum stress axis from being vertical to horizontal, causing the formation of strike-slip faults instead of the dilatational fractures related to the fissure swarms. The activity in different parts of the Askja fissure swarm is uneven in time and switches between subswarms, as shown by a fissure swarm that is exposed in an early Holocene lava NW of Herðubreið but disappears under a younger (3500–4500 BP) lava flow. We suggest that the location of inflation centres in Askja central volcano controls into which part of the Askja fissure swarm a dike propagates. The size and amount of fractures in the Kollóttadyngja lava shield decrease with increasing elevation. We suggest that this occurred as the depth to the propagating dike(s) was greater under central Kollóttadyngja than under its flanks, due to topography.  相似文献   
15.
Compositionally diverse dacitic magmas have erupted from Mount St Helens over the last 4000 years. Phase assemblages and their compositions in these dacites provide information about the composition of the pre-eruptive melt, the phases in equilibrium with that melt and the magmatic temperature. From this information pre-eruptive pressures and water fugacities of many of the dacites have been inferred. This was done by conducting hydrothermal experiments at 850°C and a range of pressures and water fugacities and combining the results with those from experiments at temperatures of 780 and 920°C, to cover the likely range in equilibration conditions of the dacites. Natural phase assemblages and compositions were compared with the experimental results to infer the most likely conditions for the magmas prior to eruption. Water contents disolved in the melts of the dacites were then estimated from the inferred conditions. Water contents in the dacites have varied greatly, from 3.7 to 6.5 wt.%, in the last 4000 years. Between 4000 and about 3000 years ago the dacites tended to be water saturated and contained 5.5 to 6.5 wt.% water. Since then, however, the dacites have been significantly water-undersaturated and contained less than 5.0 wt.% water. These dacites have tended to be hotter and more mafic, and andesitic and basaltic magmas have erupted. These changes can be explained by variable amounts of mixing between felsic dacite and basalt, to produce hotter, drier and more mafic dacites and andesites. The magma storage region of the dacitic magmas has also varied significantly during the 4000 years, with shifts to shallower levels in the crust occurring within very short time periods, possibly even two years. These shifts may be related to fracturing of overlying roof rock as a result of magma with-drawal during larger volume eruptions.  相似文献   
16.
Mount St. Helens has explosively erupted dacitic magma discontinuously over the last 40,000 years, and detailed stratigraphic data are available for the past 4,000 years. During this last time period the major-element composition of the dacites has ranged from mafic (62–64 wt% SiO2) to felsic (65–67 wt% SiO2), temperature has varied by about 150°C (770°–920°C), and crystallinity has ranged between 20% and 55%. Water content of these dacites has also fluctuated greatly. Although the source for the dacitic magmas is probably partial melting of lower crustal rocks, there is strong physical evidence, such as banded pumices, thermal heterogeneities in single pumices, phenocryst disequilibrium, contrasts between compositions of glass inclusions and host matrix glass, and amphibole reaction rims, that suggests that magma mixing has been prominent in the dacitic reservoir. Indeed, we suggest that the variations in major- and trace-element abundances in Mount St. Helens dacites indicate that magma mixing between felsic dacite and mafic magma has controlled the petrologic diversity of the dacitic magmas. Magma mixing has also controlled the composition of andesites erupted at Mount St. Helens, and thus it appears that the continuum of magmatic composition erupted at the volcano is controlled by mixing between felsic dacite, or possibly rhyodacite, and basalt. The flux of the felsic endmember to the reservior appears to have been relatively constant, whereas the flux of basalt may have increased in the past 4,000 years, as suggested by the apparently increased abundance of mafic dacite and andesite erupted in this period.  相似文献   
17.
Tholeiite basalts from 60° N to 65° N on the Mid-Atlantic Ridge were melted and recrystallized at atmospheric pressure in a CO2-H2 gas mixture. Seven basalts are from the Langjokull-Thingvellir volcanic zone and the Reykjanes Peninsula of Iceland and nine are from the Reykjanes Ridge. The crystallization sequence in both Iceland and Reykjanes Ridge basalts with (Total Fe as FeO)/(Total Fe as FeO+ MgO) [F/F + M] less than 0.6 is olivine, plagioclase, clinopyroxene. Chromian spinel crystallizes before plagioclase in one Iceland and one Reykjanes Ridge basalt with F/F+M less than 0.57. Chemical differences of the two groups of basalts (lower SiO2 and higher alkalis in Iceland basalts) can not simply be a result of low pressure fractional crystallization. Liquidus temperatures of the seven Iceland basalts decreases from 1,230° C to 1,170° C as the F/F+M of the rock increases from 0.52 to 0.70. The liquidus temperatures of the Reykjanes Ridge basalts are about 10° C lower than those of the Iceland basalts for the same F/F+M value. The profile of measured liquidus temperatures from 65° N on Iceland to 60° N on the Reykjanes Ridge has a minimum value at 63.2° N on the Reykjanes Ridge just south of Iceland. Model calculations of the pressure of phenocryst crystallization indicate that olivine and plagioclase in Langjokull basalts could have equilibrated between 2.0 and 6.2 kb (200 to 620 MPa). Phenocryst assemblages in Reykjanes Ridge basalts at 60° N could have crystallized together at greater than 2 kb (200 MPa) and probably less than 8 kb (800 MPa). A minimum in the equilibrium pressure of phenocryst crystallization occurs between 62.9° and 64° N and coincides with the minimum in the experimentally determined liquidus temperatures. The more extensive fractionation at low pressure in this area could be related to the shift of the Mid-Atlantic Ridge axis along the leaky transform fault from the Reykjanes Ridge to the Thingvellir volcanic zone.  相似文献   
18.
Rhyolitic glass occurs as an interstitial phase in Tertiary basaltic dikes from northwestern Iceland forming up to 8% of the mode. Chlorophaeite occurs as globules within the glass as well as in interstitial vugs and vesicles. The existence and textural relations of these iron-rich globules in a silica-rich glass is suggestive of liquid immiscibility such as observed in synthetic systems. Trace element data on these naturally occurring phases is, however, inconsistent with experimentally determined partition coefficients for, for example, Ti, P, and Zr in immiscible liquids indicating that the chlorophaeite does not represent an immiscible phase and is more likely an alteration product. The similarity of the interstitial acid glasses to Iceland rhyolites is suggestive evidence of an origin for at least some Icelandic rhyolites by shallow-level fractional crystallization of basaltic magmas.  相似文献   
19.
We determine the binary star fraction as a function of radius in NGC 1818, a young rich cluster in the Large Magellanic Cloud, using Hubble Space Telescope images in bands F336W (∼ U ) and F555W (∼ V ). Our sample includes binaries with M primary ∼ 2–5.5 M and M secondary ≳ 0.7 Mprimary. The binary fraction increases towards the cluster centre, from ∼ 20 ± 5 per cent in the outer parts, to ∼ 35 ± 5 per cent inside the core. This increase is consistent with dynamical mass segregation and need not be primordial. We compare our results with expectations from N -body models, and discuss the implications for the formation and early evolution of such clusters.  相似文献   
20.
The majority of tephra generated during the paroxysmal 1883 eruption of Krakatau volcano, Indonesia, was deposited in the sea within a 15-km radius of the caldera. Two syneruptive pyroclastic facies have been recovered in SCUBA cores which sampled the 1883 subaqueous pyroclastic deposit. The most commonly recovered facies is a massive textured, poorly sorted mixture of pumice and lithic lapilli-to-block-sized fragments set in a silty to sandy ash matrix. This facies is indistinguishable from the 1883 subaerial pyroclastic flow deposits preserved on the Krakatau islands on the basis of grain size and component abundances. A less common facies consists of well-sorted, planarlaminated to low-angle cross-bedded, vitric-enriched silty ash. Entrance of subaerial pyroclastic flows into the sea resulted in subaqueous deposition of the massive facies primarily by deceleration and sinking of highly concentrated, deflated components of pyroclastic flows as they traveled over water. The basal component of the deposit suggests no mixing with seawater as inferred from retention of the fine ash fraction, high temperature of emplacement, and lack of traction structures, and no significant hydraulic sorting of components. The laminated facies was most likely deposited from low-concentration pyroclastic density currents generated by shear along the boundary between the submarine pyroclastic flows and seawater. The Krakatau deposits are the first well-documented example of true submarine pyroclastic flow deposition from a modern eruption, and thus constitute an important analog for the interpretation of ancient sequences where subaqueous deposition has been inferred based on the facies characteristics of encapsulating sedimentary sequences.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号